Algebra 2 Notes


Name:  ________________

Section 4.4 – Complex Numbers and Roots
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	An imaginary number is the square root of a negative number.

Imaginary numbers can be written in the form 
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, where 
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 is a real number and 
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 is the imaginary unit.

The square of an imaginary number is the original negative number.
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	If 
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 is a positive real number, then 
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Example 1:
Express each number in terms of 
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.

	a.  
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Example 2:
Solve each equation.

	a.  
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Complex Numbers (
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Every complex number has a ____________________ 
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 and an ____________________ 
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.  
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Real numbers are complex numbers where 
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.  Imaginary numbers are complex numbers where 
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.  These are sometimes called _________________________.  

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal.

Example 3:
Find the values of 
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 and 
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 that make each equation true.

	a.  
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You can see in the graph of � EMBED Equation.DSMT4  ��� that � EMBED Equation.DSMT4  ��� has no real _______________.  If you solve the corresponding equation � EMBED Equation.DSMT4  ���, you find that � EMBED Equation.DSMT4  ���, which has no real _______________.  


However, you can find solutions if you define the square root of negative numbers, which is why _________________________ were invented.  The imaginary unit __________ is defined as __________.  You can use the imaginary unit to write the square root of any negative number.





A ___________________ is a number that can be written in the form � EMBED Equation.DSMT4  ���, where � EMBED Equation.DSMT4  ��� and � EMBED Equation.DSMT4  ��� are real numbers and � EMBED Equation.DSMT4  ���.  The set of real numbers is a _______________ of the set of complex numbers � EMBED Equation.DSMT4  ���.
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Real Numbers
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