Algebra	2	No	tes	
Section	5.1/	∕5.3 ∘	Polynomia	NIS

Name: leey

A monomial	is a number or a product of numbers and variables with whole number exponents. A
polynomial	_ is a monomial or a sum or difference of monomials. Each monomial in a polynomial is a
polynomial term	Because a monomial has only one term, it is the simplest type of polynomial.

Polynomials have no variables in <u>denominator</u> or <u>exponents</u>, no roots or absolute vales of variables, and all variables have whole number <u>exponents</u>.

Polynomials:

 $3x^4$

$$2z^{12} + 9z^{2}$$

 $\frac{1}{2}a^{2}$

 $0.15x^{10}$

 $3t^2 - t^3$

NOT Polynomials:

 3^x

 $2b^3-6b$

 $\frac{8}{5v^2}$

 $\frac{1}{2}\sqrt{x}$

 $m^{0.75} - m$

The _____ is the ____ of the exponents of the variables.

Example 1: Identify the degree of each monomial.

a. x^4	b. 12 × °	c. $4a^2b$	d. $5x^3y^4z^{-1}$
[4]		3	3+4+1

The degree of a <u>polynomial</u> is given by the term with the <u>highest</u> degree. A polynomial with one variable is in <u>standard</u> form when its terms are written in <u>descending</u> order by degree. So, in standard form, the degree of the <u>first</u> term indicates the degree of the polynomial, and the <u>leading Coefficient</u> is the coefficient of the first term.

leading coefficient
$$5x^3 + 8x^2 + 3x' - 17 \times$$

Degree of Term:

3

2

0

A polynomial can be classified by its number of terms. A polynomial with two terms is called a binomial, and a polynomial with three terms is called a trinomial. A polynomial can also be classified by its degree.

	Classifying Pol	ynomials be Degree
Name	Degree	Example
Constant	0	_9
Linear	1	x-4
Quadratic	2	$x^2 + 3x - 1$
Cubic	3	$x^3 + 2x^2 + x + 1$
Quartic	4	$2x^4 + x^3 + 3x^2 + 4x - 1$
Quintic	5	$7x^5 + x^4 - x^3 + 3x^2 + 2x - 1$

Rewrite each polynomial in standard form. Then identify the leading coefficient, degree, Example 2: and number of terms. Name the polynomial.

a.	$2x + 4x^2 - 1$
	andard Form:

4x2+2x-1

Leading Coefficient: _

Degree: _ 2

Number of Terms: 3

Name the polynomial:

quadratic trinomial

b. $7x^3 - 11x + x^5 - 2$

Standard Form: $\chi + 7 \chi^3 - 11 \chi - 2$

Leading Coefficient:

Degree: 5

Number of Terms: 4

Name the polynomial:

quintic polynomial w/

c. $4x-2x^3+2$

Standard Form:

 $-2x^3 + 4x + 2$

Leading Coefficient: _ -2

Degree: 3

Number of Terms: 3

Name the polynomial:

cubic trinomial

To add or subtract polynomials, combine like terms. You can add or subtract horizontally or vertically.

Add or subtract. Write your answer in standard form.

a.
$$(3x^{2}+7+x)+(14x^{3}+2+x^{2}-x)$$

 $3x^{2}+x^{2}+7+2+x+-x+1+x^{3}$
b. $(1-x^{2})-(3x^{2}+2x-6)$
 $1-x^{2}-3x^{2}-2x+6$

$$1-x^{2}-3x^{2}-2x+6$$

$$1-x^{2}-3x^{2}-2x+7$$

b.
$$(1-x^2) - (3x^2 + 2x - 6)$$

 $(1-x^2) - (3x^2 + 2x - 6)$
 $(1-x^2) - (3x^2 + 2x - 6)$
 $(1-x^2) - (3x^2 + 2x - 6)$
 $(1-x^2) - (3x^2 + 2x - 6)$

A polynomial function is a function whose rule is a polynomial.

Medical Application

Cardiac output is the amount of blood pumped through the heart. The output is measured by a technique called dye dilution. A doctor injects dye into a vein near the heart and measures the amount of dye in the arteries. The cardiac output of a particular patient can be approximated by the function $f(\frac{1}{2}) = 0.0056t^3 - 0.022t^2 + 2.33t$, where t represents time (in seconds after injection, $0 \le t < 23$) and f(t) represents the concentration of dye (in milligrams per liter).

- (a) Evaluate f(t) for t=0 and t=3.
- (b) Describe what the value of the function from part (a) represent.

f(0)=0 Concentration of dye, ong/L in artery at start

F(3) = 5.1612 Concentration of dye, 5.1612 mg/L in artery after 35.

Example 5: Graph each polynomial function on a calculator. Describe the graph and identify the number of real zeros.

a. $f(x) = x^3 - x$ From left to right, the graph increases, decreases slightly, and then increases again. It crosses the x-axis 3 times, 50 there appears to be 3 real zeros.

b. $h(x) = -x^4 + 8x^2 - 1$ From left to right, the graph alternately increases and decreases, Changing direction 3 times. It crosses x-axis 4 times, so there appears to be 4 real zeros