Algebra 2 Notes

Name:

Section 8.1- Variation Functions

In Chapter 2, you studied many types of linear functions. Once special type of linear function is called a direct variation . A direct variation is a relationship between two variables x and y that can be written in the form $y = k \times k + 0$. In this relationship, k is the <u>Constant</u> of variation. For the equation y = kx, y varies directly as

A direct variation equation is a <u>linear</u> equation in the form y = mx + b, where b = 0 and the constant of variation k is the <u>slope</u>. Because b = 0, the graph of a direct variation always passes through the _____Origin

Writing and Graphing Direct Variation

a. Given: y varies directly as x, and y = 14 when x = 3.5. Write and graph the direct variation function.

b. Given: y varies directly as x, and y = 6.5 when x = 13. Write and graph the direct variation function.

Example 2: Solving Direct Variation Problems

a. The circumference of a circle C varies directly as the radius r, and $C = 7\pi$ ft when r = 3.5 ft. Find r when $C = 4.5\pi$ ft.

$$7\pi = K(3.5)$$

b. The perimeter P of a regular dodecagon varies directly as the side length s, and P = 18 in when s=1.5 in. Find s when P=75 in.

A_ ioint	variation	is a relationship am	10ng3	variables that can be
written in the form	y = kxz, where k	is the constant of variation.	For the equation	y = kxz, y varies
jointly as x and z .				

Example 3: Solving Joint Variation Problems.

The area A of a triangle varies jointly as the base b and height h, and A=12 m 2 when b=6 m and h=4 m. Find b when A=36 m 2 and h=8 m.

$$A = kbh$$

$$12 = k \cdot b \cdot 4$$

$$12 = k \cdot 24$$

$$k = \frac{12}{24} \longrightarrow k = \frac{1}{2}$$

So,
$$A = \frac{1}{2}bh$$

 $3b = \frac{1}{2}b \cdot 8$
 $3b = 4b$
 $b = 9$ [9 m]

A third type of variation describes a situation in which one quantity increases and the other decreases. For example, the table shows that the time needed to drive 600 miles decreases as speed increases.

Speed (mi/h)	Time (h)	Distance (mi)			
30	20	600			
40	15	600			
50	12	600			

This type of variation is an <u>inverse variation</u>. An inverse variation is a relationship between two variables x and y that can be written in the form $y = \frac{k}{x}$, where $k \neq 0$. For the equation $y = \frac{k}{x}$, y varies inversely as y

Example 1: Writing and Graphing Inverse Variation

Example 5: Community Service Application

K= 1250

The time t that it takes for a group of volunteers to construct a house varies inversely as the number of volunteers v. If 20 volunteers can build a house in 62.5 working hours, how many volunteers would be needed to build a house in 50 working hours?

$$t = \frac{k}{V}$$

$$62.5 = \frac{k}{20}$$

$$k = 20(62.5)$$

$$50 = \frac{1250}{V}$$

$$50V = 125$$

50 = 1250 25 volunteers

You can use algebra to rewrite variation functions in terms of k.

Direct Variation	Inverse Variation				
$y = kx \rightarrow \underline{\qquad} = \underline{\qquad} \underline{\qquad}$	$y = \frac{k}{x} \rightarrow \underline{\qquad } = \times \underline{\qquad }$				

Notice that in direct variation, the ______ of the two quantities is constant. In inverse variation, the _____ of the two quantities is constant.

Example 6: Identifying Direct and Inverse Variations: Determine whether each data set represents a direct variation, an inverse variation, or neither. Justify your answer.

a						b.							
x	3		8		10		x	4.5	T	12		2	
y	9 24		30	30 × y		8		3		18			
J X	93	=	24	=	30	/ X	Y ×	¥.5	+	3	+	18	
×y	27	†	192	‡	300	97	xy	36	earliff	36	= '	36	(1)

A <u>combined</u> variation is a relationship that contains both direct and inverse variation. Quantities that vary directly appear in the <u>NUMERATOR</u>, and quantities that vary inversely appear in the <u>denominator</u>.

Example 7: Chemistry Application.

The volume V of a gas varies inversely as the pressure P and directly as the temperature T . A certain gas has a volume of 10 liters (L), a temperature of 300 kelvins (K), and a pressure of 1.5 atmospheres (atm). If the gas is compressed to a volume of 7.5 L and is heated to 350 K, what will the new pressure be?

$$V = \frac{kT}{P}$$

$$10 = \frac{K.300}{1.5}$$

$$10 = \frac{200 \, \text{k}}{1.5}$$

$$10 = 200 \, \text{k}$$

$$10 = 200 \, \text{k}$$

$$10 = 2\frac{1}{3}$$

$$10 = 2\frac{1}{3}$$

$$10 = 2\frac{1}{3}$$

$$10 = 2\frac{1}{3}$$

$$10 = 2\frac{1}{3}$$