Algebra 2 Notes Section 8.2 - Multiplying and Dividing Rational Expressions

A rational expression is a quotient of two polynomials. Some examples and some NONexamples of rational expressions can be seen below:

$$\frac{x^2-4}{x+2}$$

$$\frac{10}{x^2-6}$$

$$\frac{x+3}{x-7}$$

$$\frac{x^2-4}{x+2}$$
 $\frac{10}{x^2-6}$ $\frac{x+3}{x-7}$ $\frac{x^2-5x+6}{x^2+3x+2}$

$$\frac{12x^2}{y^5}$$

$$\frac{x+2}{3}$$

$$\frac{2}{5}$$

$$x^{3}-1$$

$$\frac{x+2}{3}$$
 $\frac{2}{5}$ x^3-1 $(x+3)(x-2)$ $\frac{x^4+2}{7}$

$$\frac{x^4+2}{7}$$

Because rational expressions are <u>ratios</u> of polynomials, you can simplify them the same way as you simplify fractions. Recall that to write a fraction in simplest form, you can divide out common factors in the numerator and denominator.

Let's see what we mean by simplifying a basic fraction:

$$\frac{9}{24} = \frac{\cancel{3} \cdot \cancel{3}}{\cancel{3} \cdot \cancel{8}} = \boxed{\frac{3}{\cancel{8}}}$$

Example 1: Be sure to identify ANY x-values for which the ORIGINAL expression is undefined. HINT: Think about when the denominator would be equal to zero.

a.
$$\frac{3x^7}{2x^4} = \frac{3x}{2}$$

b. $\frac{16x^{11}}{8x^2} = \frac{3 \cdot \cancel{8} \cdot \cancel{x}^{11-2}}{\cancel{8}}$

c. $\frac{12x}{16x^5} = \frac{3 \cdot \cancel{4}}{\cancel{4} \cdot \cancel{4} \cdot \cancel{4}} = \frac{3 \cdot \cancel{4}}{\cancel{4} \cdot \cancel{4} \cdot \cancel{4}} = \frac{3 \cdot \cancel{4}}{\cancel{4} \cdot \cancel{4} \cdot \cancel{4}} = \frac{3 \cdot \cancel{4}}{\cancel{4} \cdot \cancel{4}} = \frac{3 \cdot \cancel{4}}{\cancel{4}} = \frac{3 \cdot \cancel{4}}{\cancel{$

The previous examples could be simplified quickly because the numerator and denominator of each rational expression were monomials. Life is not always so simple. 3 But, never fear! When you are faced with a numerator and/or denominator that are binomials or trinomials, you just need to factor first before you can simplify. To show WHY you would need to do this, consider the following...

2 + 4If given 7, would you cross out the 2s and get a result of 4?

Hopefully you said NO! How would you do this problem?

$$\frac{2+4}{2} = \frac{6}{2} = \frac{\cancel{2} \cdot 3}{\cancel{2}} = 3$$

We have to use the same idea when dealing with polynomials. FACTOR FIRST! And then get to canceling!

Example 2: Simplify. Be sure to identify ANY x-values for which the ORIGINAL expression is

You can multiply rational expressions the same way that you multiply fractions!

Let's see what we mean by multiplying with basic fractions: $\frac{2 \cdot 15}{5 \cdot 8} = \frac{\cancel{\cancel{3}}}{\cancel{\cancel{5}}} \cdot \frac{\cancel{\cancel{5}} \cdot \cancel{\cancel{5}}}{\cancel{\cancel{5}} \cdot \cancel{\cancel{5}}} = \boxed{\frac{3}{\cancel{\cancel{4}}}}$

Before we start multiplying rational expressions, let's go over the "STEPS" in the table below.

Multiplying Rational Expressions

- 1. Factor out all numerators and denominators COMPLETELY.
- 2. Divide out common factors of the numerators and denominators.
- 3. Multiply numerators. Then multiply denominators.
- 5. Be sure the numerator and denominator have no common factors other than 1.

Example 3: Multiply. Assume that all expressions are defined.

a.
$$\frac{2x^{4}y^{5}}{3x^{2}} \cdot \frac{15x^{2}}{8x^{3}y^{2}} = \frac{\cancel{\cancel{X}} \cdot \cancel{\cancel{X}} \cdot \cancel{\cancel{X}}$$

b.
$$\frac{x}{15} \cdot \frac{x^7}{2x} \cdot \frac{20}{x^4} = \frac{\cancel{3} \cdot \cancel{10} \cdot \cancel{x}^{1+7}}{\cancel{x} \cdot \cancel{15} \cdot \cancel{x}^{1+7}}$$
$$= \frac{\cancel{2} \cdot \cancel{8} \times \cancel{x}}{\cancel{3} \cdot \cancel{8} \times \cancel{5}}$$
$$= \frac{\cancel{2} \times \cancel{8}}{\cancel{3}}$$
$$= \frac{\cancel{2} \times \cancel{3}}{\cancel{3}}$$

Multiply. Assume that all expressions are defined.

a.
$$\frac{x+2}{3x+12} \cdot \frac{x+4}{x^2-4} = \frac{\cancel{(x+2)}}{\cancel{3(x+4)}} \cdot \frac{\cancel{(x+4)}}{\cancel{(x-2)(x+2)}}$$
b. $\frac{40-10x}{x^2-6x+8} \cdot \frac{x+3}{5x+15} = -\cancel{)6(x+3)} = -\cancel{)6(x+3$

$$\frac{40-10x}{x^2-6x+8} \cdot \frac{x+3}{5x+15}$$

$$= \frac{-10(x+3)}{(x+3)(x-2)} \cdot \frac{(x+3)}{5(x+3)}$$

$$= \frac{-2}{x-2}$$

You can also divide rational expressions. Recall that to divide by a fraction, you Multiply by the reciprocal. by the <u>reciprocal</u>

Let's see what we mean by multiplying with basic fractions:

$$\frac{3}{4} \div \frac{15}{8} = \frac{3}{4} \cdot \frac{8}{15} = \frac{3}{15} \cdot \frac{2 \cdot \cancel{4}}{\cancel{8} \cdot 5} = \frac{2}{5}$$

Divide

Example 5: Multiply. Assume that all expressions are defined.

a.
$$\frac{4x^3}{9x^2y} \cdot \frac{16}{9y^5} = \frac{14x^3}{9x^2y} \cdot \frac{9y^5}{16y^5}$$

$$= \frac{x^3y^5}{4x^2y}$$

$$= \frac{x^{3-2} \cdot y^{3-1}}{4}$$

$$= \frac{x^{3-2} \cdot y^{3-1}}{4}$$

b.
$$\frac{x^2}{4} \div \frac{x^4y}{12y^2} = \frac{x^2}{x} \cdot \frac{x^2y^2}{x^4y}$$

$$= \frac{3x^2y^2}{x^4y}$$

$$= \frac{3y^{2-1}}{x}$$

$$= \frac{3y}{x^2}$$

Example 6: Multiply. Assume that all expressions are defined.

a.
$$\frac{2x^{2}-7x+4}{x^{2}-9} \div \frac{4x^{2}-1}{2x^{2}-7x+3}$$
b.
$$\frac{x^{5}-4x^{3}}{x^{2}-x-2} \div \frac{x^{5}-x^{4}-2x^{3}}{x^{2}-1}$$

$$\frac{2x^{3}-7x+4}{x^{2}-9} \cdot \frac{2x^{2}-7x+3}{4x^{2}-1}$$
b.
$$\frac{x^{5}-4x^{3}}{x^{2}-x-2} \div \frac{x^{5}-x^{4}-2x^{3}}{x^{2}-1}$$

$$\frac{x^{5}-4x^{9}}{x^{2}-x-2} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}}$$

$$\frac{x^{5}-x^{4}-2x^{3}}{x^{2}-x-2} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}}$$

$$\frac{x^{5}-x^{4}-2x^{3}}{x^{2}-x-2} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}}$$

$$\frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}}$$

$$\frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}}$$

$$\frac{x^{5}-x^{4}-x^{2}-x^{2}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{3}} \cdot \frac{x^{5}-x^{4}-2x^{3}}{x^{5}-x^{4}-2x^{4}} \cdot \frac{x^{5}-x^{4}-2x^{4$$

It will be important for you to (a) know how to factor, and (b) to practice by doing the homework!