Algebra 2 Notes Name: Mame: Mame: Section 7.2 - Inverses of Relations and Functions

You have seen the word ___inverse___ used in various ways:

- The additive inverse of 3 is -3.
- The multiplicative inverse of 5 is 1/5.
- The multiplicative inverse matrix of $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ is $A^{-1} = \begin{bmatrix} 1 & -0.5 \\ -2 & 1.5 \end{bmatrix}$.

You can also find and apply inverses to relations and functions. To graph the inverse relation, you can reflect each point across the line y = x. This is equivalent to y = x the x- and y-values in each ordered pair or relation.

Example 1: Graph the relation and connect the points. Then graph the inverse. Identify the domain and range of each relation.

Relati	ion:				
X	0	1	2	4	8
У	2	4	5	6	7

Domain: 0 = x = 8

Range: 2= 1=7

Inverse:

X	2	4	5	6	7
у	0)	2	4	8

Domain: $2 \le x \le 7$

Range: 0 = y = 8

When the relation is also a function, you can write the inverse of the function f(x) as $f^{-1}(x)$.

This notation does **NOT** indicate a f(x) reciprocal.

Functions that undo each other are <u>inverse</u> functions.

To find the inverse function, use the inverse operation. Another option would be to switch the x and y in the equation for the original function, and then solve for y.

Given f(x), find the equation of its inverse, $f^{-1}(x)$. Example 2:

2 ().	., ,	
a. $f(x) = 2x$ $y = 2x$ inverse $x = 2y$ $y = \frac{x}{2}$ $f^{-1}(x) = \frac{x}{2}$	b. $f(x) = \frac{x}{4} - 5$ $y = \frac{x}{4} - 5$ inverse $x = \frac{y}{4} - 5$ $y = x + 5$ $y = 4(x + 5)$	(f = '(x) = +x +20
c. $f(x) = 5x + 7$ $y = 5x + 7$ in verse	d. $f(x) = \frac{2}{3}x - 8$ $y = \frac{2}{3}x - 8$ inverse	

$$(x) = \frac{x-7}{5}$$
 $y = \frac{3}{2}x$

Example 4: Retailing Application.

A clerk needs to price a digital camera returned by a customer. The customer paid a total of \$103.14, which included a gift-wrapping charge of \$3 and 8% sales tax. What price should the clerk mark the tag?

Write an equation for the total cost that models price as a function of cost.

Find the inverse function that models price as a function of cost. Step 2:

Solve for p.
$$C=1.08p+3.24$$

 $1.08p=C-3.24$
 $P=\frac{C-3.24}{1.08}$
Step 3: Evaluate the inverse function for $c=\$103.14$.

$$p = \frac{103.14 - 3.24}{1.08}$$
 $p = 92.5$ $\boxed{$92.50}$