## Algebra 2 Notes

## Name:

## ley

## Section 5.1 - Using Transformations to Graph Quadratic Functions

A quadratic function is a function that can be written in the form  $\frac{F(x)}{a(x-h)^2+K}$  where  $a \neq 0$ . In a quadratic function, the variable is always  $\frac{59 \text{ uared}}{a}$ .

| The Quadratic Parent Function $f(x)$ | $=x^2$ |  |
|--------------------------------------|--------|--|
|--------------------------------------|--------|--|

Domain:

R

Range:

Vertex:

(0,0)

| х   | $y = xy^2$ |
|-----|------------|
| -2  | 4          |
| -12 | \          |
| 0   | 0          |
| Ì   | 1          |
| 2   | 4          |

| The state of the s | 18/1 |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V    | 8 x |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8   |     |

Notice that the graph of the parent function  $f(x) = x^2$  is a \_\_\_\_\_\_-shaped curve called a \_\_\_\_\_\_\_\_\_\_. As with other functions, you can graph a quadratic function by plotting points with coordinates that make the equation true.

Example 1: Graph  $f(x) = x^2 - 6x + 8$  by using a table. Plot enough points to see the entire curve.

| x | $f(x) = x^2 - 6x + 8$       | (x, f(x)) |
|---|-----------------------------|-----------|
| 1 | $f(1) = 1^2 - 6(1) + 8 = 3$ | (1,3)     |
| 2 | f(2) = 22 - 6(2) +8 = 0     | (2,0)     |
| 3 | f(3) = 32 - 6(3) +8 = -1    | (3,-1)    |
| 4 | P(4)=16-24+8=0              | (4,0)     |
| 5 | F(s)=25-30+8=3              | (5,3)     |



You can graph quadratic functions by applying  $\frac{\text{transformations}}{\text{to the parent function }} f(x) = x^2$ .

Example 2: Using the graph of  $f(x) = x^2$  as a guide, describe the transformations, and then graph.

a.  $g(x) = (x+3)^2 + 1$ 

3 units left lunit up



b.  $g(x) = (x-2)^2 - 1$ 

2 units right 1 unit down







If a parabola opens upward, it has a  $\underline{\text{minimum}}$  point. If a parabola opens downward, it has a  $\underline{\text{maximum}}$  point. This lowest or highest point is the  $\underline{\text{Vertex}}$  of a parabola.



Because the vertex is translated h horizontal units and k vertical units from the  $\underline{\text{origin}}$ , the vertex of the parabola is at  $\underline{(h, k)}$ .

Example 3: Use the description to write the quadratic function in vertex form. Check w/ calculator. ©

a. The parent function  $f(x) = x^2$  is reflected across the x-axis, vertically stretched by a factor of 6, and translated 3 units right to create g.

$$g(x) = -6(x-3)^2$$

b. The parent function  $f(x) = x^2$  is vertically compressed by a factor of  $\frac{1}{3}$  and translated 2 units right and 4 units down to create  $g : \frac{\sqrt{e_X + e_X}}{(2_y - e_X)}$ 

$$g(x) = \frac{1}{3}(x-a)^2 - 4$$

c. The parent function  $f(x) = x^2$  is reflected across the x-axis and translated 5 units left and 1 unit up to create g. Vertex  $(-\varsigma_1)$ 

$$f(x) = -(x-5)^2 + 1$$