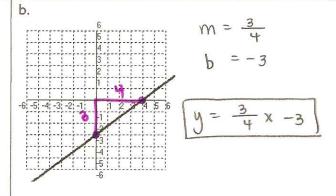
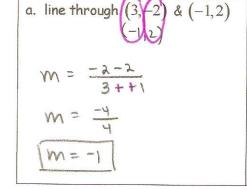
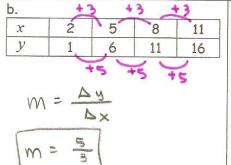

Algebra 2 Notes Name: Ley Section 2.4 – Writing Linear Functions

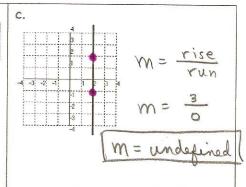

DAY ONE:

Recall from Section 2.3 that the slope-intercept form of a linear equation is $y = m \times b$, where $y = m \times b$ is its y-intercept.

In order to write an equation of a line in slope-intercept form, you would need both the _______ and ___y-intercept_.


Example 1: Write the equation of the graphed line in slope-intercept form.





Slope Formula				
Words	Algebra	Graph		
Given two points on a line, the slope is the ratio of the difference in the y -values to the difference in the corresponding x -values, or rise over run.	The slope of the line containing (x_1, y_1) and (x_2, y_2) is	x, y x x x x x x x x x x x x x x x x x x		

Example 2: Find the slope of each line.

Because the slope of a line is constant, it is possible to use ANY point of a line and the slope of the line to write an equation of the line in point-slope form.

Point-Slope Form

The equation of a line with a slope of m and the point (x_1, y_1) is $y - y_1 = m(x - x_1)$.

Example 3: Write the equation of each line in slope intercept form.

		+2		
x	-3	-1	1	3
y	1.5	1	0.5	0

$$M = \frac{\Delta y}{\Delta x}$$
 point (3)

$$M = \frac{-0.5}{2}$$

$$y-y_1 = m(x-x_1)$$

 $y-0 = -\frac{1}{4}(x-3)$

$$y = -\frac{1}{4}x + \frac{3}{4}$$

b. with slope -5 and through the point $\left(1,3\right)$

point
(3,0)
$$y-y_1 = vn(x-x_1)$$

 $y-3 = -5(x-1)$
 $y=3=-5x+5$
 $y=-5x+8$

c. through the points (-2,-3) and (2,5)

$$M = \frac{5+13}{2+12}$$

$$y-y_1 = m(x-x_1)$$

 $y+3 = a(x++2)$
 $y+3 = ax+4$

Example 4: Application

In the game of Monopoly, a player who lands on a property that is owned by another player must pay rent to the owner of the property. For most color properties, the rent can be modeled by a linear function of the selling price.

(a) Express the rent as a function of the selling price.

Monopoly	Price and Rates	u
Property Name	Selling Price (\$)	Rent (\$)
Mediterranean Avenue	(60	23
Vermont Avenue	100	6)
Tennessee Avenue	180	14
Marvin Gardens	280	24
Pennsylvania Avenue	320	28

$$m = \frac{\Delta rent}{\Delta selling price}$$

$$m = \frac{4}{40}$$

$$m = \frac{1}{10}$$

$$y-y_1 = m(x-x_1)$$

 $y-a = \frac{1}{10}(x-60)$

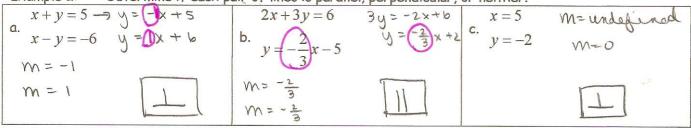
$$y = \frac{1}{10} \times -\frac{1}{10}$$

(b) How much is the rent for Illinois Avenue, which has a selling price of \$240?

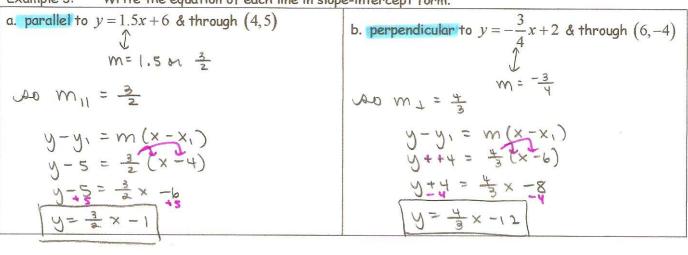
$$y = \frac{1}{10}(240) - 4$$

\$20

DAY TWO:


By comparing slopes, you can determine if lines are parallel or perpendicular. You can also write equations of lines that meet certain needs. || = parallel = perpendicular

Parallel and Perpendicular Lines			
Words	Algebra	Graph	
Parallel Lines - If both slopes are defined, the slopes of parallel lines are equal.	$y_1 = 2x + 1 \qquad \text{m} = 2$ $y_2 = 2x + 3 \qquad \text{m} = 2$	m, = +2	
The slopes of parallel vertical lines are undefined.	a = 2 Same m, = m2 parallel	$m_2 = \frac{4}{2}$ $m_2 = \frac{4}{2}$ $m_2 = 2$	
Perpendicular Lines – If both slopes are defined, the slopes of perpendicular lines are opposite reciprocals. Their product is -1 .	$y_1 = -\frac{3}{2}x + 4$ $y_2 = \frac{2}{3}x - 3$ $y_3 = \frac{2}{3}$	$m_1 = -\frac{3}{2}$ $m_2 = \frac{2}{3}$	
A vertical line and a horizontal line are perpendicular.	$\left(-\frac{3}{2}\right)\left(\frac{2}{3}\right) = -1$		


Example 1: Given the slope of a line, find the slope of a line that is parallel to it and the slope of a line that is perpendicular to it.

Indi	is perpendicular to it.				
2	b5	c. 1	d. 0	5	$M_{11} = \frac{-5}{2}$
$\frac{a}{3}$	m = ==	M" =1	$M^{II} = 0$	2	2
m, = = m 1 = -3	101 - 7	**	m = undefined		MT = ==
3) 112 2	W 7 = 2	WT = -1	111 T - asymptosition		

Example 2: Determine if each pair of lines is parallel, perpendicular, or neither.

Example 3: Write the equation of each line in slope-intercept form.

