Algebra 2 Notes Section 10.3 - Ellipses

Name: Leu

ley

DAY ONE:

An ellipse	is the	set	of all	points	P(x,y)	in a p	lane	such	that th	e	20	m		of	the
distances	from	any												called	the
fo	ci			singula	r: focus),	is the c	const	ant si	um d	= PF	+66	2	T	his dist	ance
d can be r	represe	nted	by the	e length	of a piec	e of sti	ring c	conne	cting two	o pushpi	ns loc	ated o	at the	foci.	

You can use the distance formula to find the constant sum of an ellipse.

Example 1: Use the Distance Formula to find the constant sum of an ellipse with...

foci
$$F_1(-3,0)$$
 and $F_2(3,0)$, and the point on the ellipse $(0,4)$

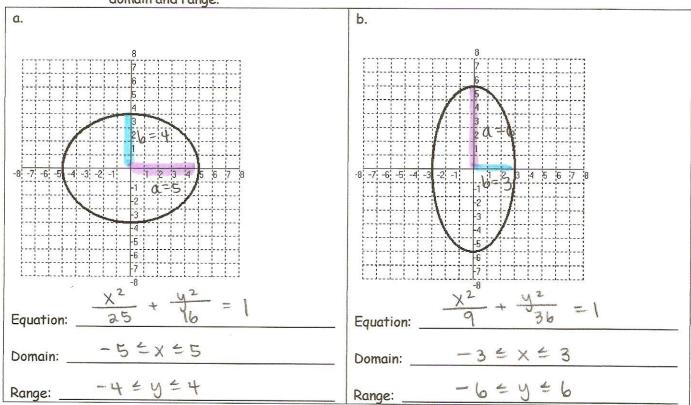
$$d = PF_1 + PF_2$$

$$d = \sqrt{(0-3)^2 + (4-0)^2} + \sqrt{(0-3)^2 + (4-0)^2}$$

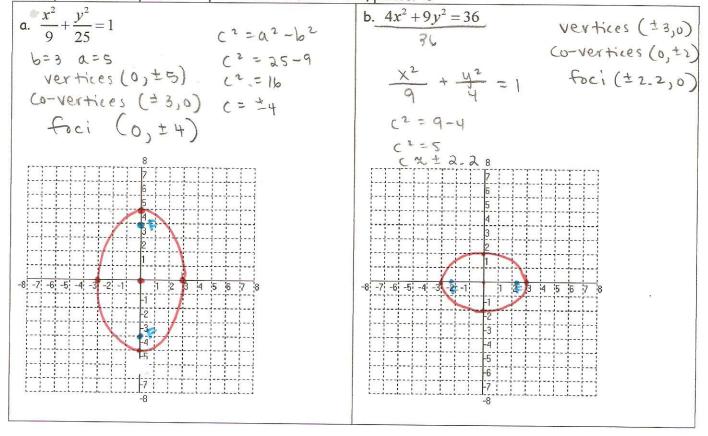
$$d = \sqrt{9+16} + \sqrt{9+16}$$

$$d = \sqrt{25} + \sqrt{25}$$

$$d = 5+5$$

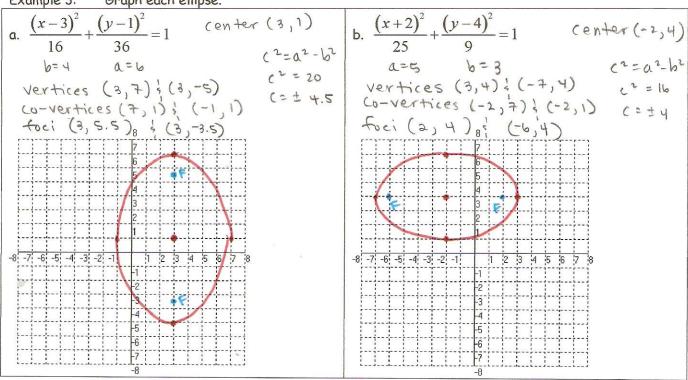

$$d = 10$$

Instead of a single radius, an ellipse has two axes. The longer axis of an ellipse is the ________ axis and passes through both _______. The endpoints of the major axis are the _______ of the ellipse. The shorter axis of an ellipse if the _______ axis. The endpoints of the minor axis are the ______ convertices _____ of the ellipse. The major axis and minor axis are _______ perpendicular _____ and intersect at the _______ of the ellipse.


Standard For	m for the Equation of an Ell	ipse with Center at $(0,0)$			
Major Axis	Horizontal	Vertical			
Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$			
Vertices	ig(a,0ig) and $ig(-a,0ig)$	(0,a) and $(0,-a)$			
Foci	(c,0) and $(-c,0)$	(0,c) and $(0,-c)$			
Co-vertices	(0,b) and $(0,-b)$	(b,0) and $(-b,0)$			
Graph		-{ La			

The standard form of an ellipse centered at (0,0) depends on whether the major axis is horizontal or vertical. The values of a, b, and c are related by the equation $\frac{c^2-\alpha^2-b^2}{2}$. Also note that the length of the major axis is $\frac{2\alpha}{2}$, the length of the minor axis is $\frac{2b}{2}$, and $\frac{\alpha>b}{2}$.

Example 1: Write an equation in standard form for each ellipse with center (0,0). Then find the domain and range.


Example 2: Graph each ellipse. Find the foci as well, please. ③

Ellipses may also be translated so that the center is NOT the origin...

Major Axis	Horizontal	Vertical
Equation	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$
Vertices	(h+a,k) and $(h-a,k)$	(h,k+a) and $(h,k-a)$
Foci	ig(h+c,kig) and $ig(h-c,kig)$	(h,k+c) and $(h,k-c)$
Co-vertices	(h,k+b) and $(h,k-b)$	(h+b,k) and $(h-b,k)$

Example 3: Graph each ellipse.

DAY TWO:

Example 4: Write an equation in standard form for each ellipse with center at (0,0).

a. vertex $(0,8)$ and co-vertex $(3,0)$ center $(0,0)$	b. vertex $(-10,0)$ and focus $(8,0)$
$\begin{array}{c} 0 = 8 \\ b = 3 \\ a = 8 \\ b = 3 \end{array}$	$\frac{(^{2} = a^{2} - b^{2})}{b^{4} = 100 - b^{2}}$ $\frac{x^{2}}{100} + \frac{y^{2}}{3b} = 1$
c. vertex $(9,0)$ and co-vertex $(0,5)$	d. co-vertex $(4,0)$ and focus $(0,3)$
$5=5$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ \sqrt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Management of the Control of the Con