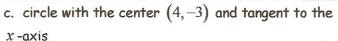
Algebra 2 Notes Section 10.2 - Circles

Name: _____

A circle is the set	of points in a	plane	that	are a fixed	distance	
called the	radius			point		the
	Because a				to find the equation	
circle.	the circle, you can	use the	3 Tance	Formula	To that the equation	101 0

Example 1: Use the Distance Formula to write the equation of a circle with center (2,1) and radius 5.

Remember that $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. $(5) = \sqrt{(x - 2)^2 + (y - 1)^2}$ $(x - 2)^2 + (y - 1)^2 = 25$

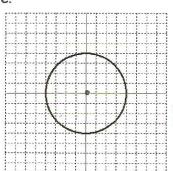

Not too much fun finding the equation of the circle with the Distance Formula, is it? Well, notice that $\underline{\hspace{1cm}}$ and the $\underline{\hspace{1cm}}$ are visible in the equation of a circle. This leads to a general formula for a circle with center $\underline{\hspace{1cm}}$ and radius $\underline{\hspace{1cm}}$.

Equation	Example	Graph	
	The equation of the circle with center $(5,-2)$ and radius $r=8$ is $(x-5)^2 + (y2)^2 = 8^2$ OR $(x-5)^2 + (y+2)^2 = 64$	8 5 4 3 2 3 1 1 2 3 4 5 5 7 8 9 30 111 days	

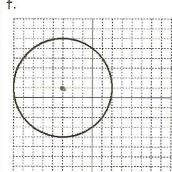
Example 2: Write the equation of each circle.

a. circle with center (0,-4) and radius 3 $(x-h)^2 + (y-k)^2 = r^2$ $(x-0)^2 + (y+4y)^2 = 3^2$ $x^2 + (y+4)^2 = 9$

b. circle with center (-3,5) and containing the point (9,-2) $(x-h)^2 + (y-k)^2 = y^2$ $(9++3)^2 + (-2-5)^2 = y^2$ $(2^2 + (-7)^2 = y^2)$ $(x+3)^2 + (y-5)^2 = 193$


$$(x-h)^{2} + (h+3)^{2} = 6$$

$$(x-4)^2 + (y+3)^2 = 9$$


$$(x+2)^2 + (y-5)^2 = 4$$

d. circle with the center (-2,5) and tangent to the

e.

$$\left[x^2 + y^2 = 16 \right]$$

$$(x+3)^2+(y-1)^2=25$$

Sometimes, you are given the equation of a circle... but the equation is NOT in the form $(x-h)^2+(y-k)^2=r^2$. Never fear! You can rewrite the equation in standard form by completing the souare. ©

Rewrite each circle in standard form. Then identify the center and the radius. Example 2:

a.
$$x^2 + y^2 - 2x = 8$$

$$(x-1)^2 + y^2 = 8 + 1$$

b.
$$x^2 - 4x + y^2 + 6y = 12$$

$$x^{2}-4x+4+y^{2}+6y+9=12+4+9$$

$$(x-2)^2 + (y+3)^2 = 25$$

c.
$$x^2 + y^2 - 10 y - 24 = 0$$

$$\chi^2 + y^2 - 10y + 25 = 24 + 25$$

$$X^2 + (y-5)^2 = 49$$

d.
$$x^2 + y^2 + 4x + 2y - 11 = 0$$

$$(x+2)^2 + (y+1)^2 = 16$$