Algebra 2 Notes

Name: ______

Section 1.6 - Solving Absolute Value Equations and Inequalities

DAY ONE:

A compound statement is made up of more than one equation or inequality.

A <u>disjunction</u> is a compound statement that uses the word <u>or</u>.

x = -3 OR x > 2

A <u>Conjunction</u> is a compound statement that uses the word <u>and</u>

XZ-3 AND XZZ = -3 = XZ

Example 1: Solve each compound inequality. Then graph the solution set.

Example 2: Write a compound inequality for each graph.

-8 -6 -4 -2 0 2 4 6 8 X

DAY TWO:

Recall that the <u>absolute value</u> of a number x, written |X|, is the distance from x to <u>O</u> on the number line. Because absolute value represents distance without regard to direction, the absolute value of any number is <u>Non negative</u>.

Absolute value equations and inequalities can be represented by compound statements.

The solutions of $ x =3$ are the two points that are 3 units from The solution is a	3 -4 -2 0 2 4 X
x=3 or $x=-3$	
The solutions of $ x $ are the points that are less	3 3
than 3 units from The solution is a	4 -4 0 -2 0 2 4 X
x < 3 and $x > -3$	
The solutions of $ x \ge 3$ are the points that are more	3 2
than 3 units from The solution is a	-4 -2 0 2 4 X
x > 3 on x < - 3	

Example 1: Solve each equation.

-8 -6 -4 -2 0 2 4 6 8 X