Algebra 2 Notes Name: <u>key</u> Section 1.5 - Properties of Exponents

In an expression of the form a^n , a is the base, n is the exponent, and the quantity a^n is called a power. The exponent indicates the number of times that the base is used as a power.

Exponential Form	Base	Expanded Form	Result
$-2x^{3}$	X	-2 x · x · ×	$-2x^3$
$-(2x)^{3}$	2×	$-(2\times)\cdot(2\times)(2\times)$	-8×3
$\left(-2x\right)^3$	-2×	(-2x)(-2x)(-2x)	-8 x 3

Zero and Negative Exponents

ntegers n,	
Numbers	Algebra
$100^{\circ} = 1$	$a^{0} = 1$
$-2(1)^2 1^2 1$	$(1)^n 1^n 1$
$7^{-2} = \left(\frac{1}{7}\right) = \frac{1}{7^2} = \frac{1}{49}$	$a^{-n} = \left(\frac{1}{a}\right)^n = \frac{1^n}{a^n} = \frac{1}{a^n}$
$(3)^{-4} (2)^{4} 2^{4} 16$	$(a)^{-n}$ $(b)^n$ b^n
$\left \frac{3}{2} \right = \left \frac{2}{2} \right = \frac{2}{2^4} = \frac{10}{91}$	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n} = \frac{b^{n}}{a^{n}}$

Example 1: Simplify each expression.

	Omparty Co	ach expression.		
a. 2 ⁻³		(3)-4	(1)-2	d. $(-5)^{-3}$
$\left(\frac{1}{2}\right)^3$		b(4)	$\left c. \left(\frac{1}{3} \right) \right $	3
(2)		1-14/4	(3)2	(-5)
13		44 [356]		13
23	181	- 34 = - 81	19	(-5)3 [-125]

Properties of Exponents:

For all nonzero real numbers a and b and into	egers m and n ,	
Words	Numbers	Algebra
Product of Powers Property: To multiply powers with the same base, add the exponents.	$4^3 \cdot 4^2 = 4^{3+2} = 4^5$	$a^m \cdot a^n = a^{m+n}$
Quotient of Powers Property: To divide powers with the same base, subtract the exponents.	$\frac{3^7}{3^2} = 3^{7-2} = 3^5$	$\frac{a^m}{a^n} = a^{m-n}$
Power of a Power Property: To raise one power to another, multiply the exponents.	$\left(4^3\right)^2 = 4^{3 \cdot 2} = 4^6$	$\left(a^{m}\right)^{n}=a^{m\cdot n}$
Power of a Product Property: To find the power of a product, apply the exponent to each factor.	$\left(3\cdot4\right)^2 = 3^2\cdot4^2$	$(ab)^m = a^m b^m$
Power of a Quotient Property: To find the power of a quotient, apply the exponent to the numerator and denominator.	$\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2}$	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

Now we will use the properties of exponents to simplify powers. **NOTE:** An algebraic expression is simplified when it contains no negative exponents, no grouping symbols, and no like terms.

Example 2: Simplify each expression. Assume all variables are nonzero.

Example 2: Simplify each expre	ession. Assume all variables are nonze	ero.
a. $2x^3(-5x)$ $2(-5) \cdot \chi^3 \cdot \chi^3$	b. $\left(\frac{2ab^4}{b^7}\right)^2$	c. $(5x^6)^3 \cdot x^{-20}$ $5^3 \times x^{6 \cdot 3} \cdot x^{-20}$
$-10 \cdot X$	22 d ² b ⁴⁻²	125 x 18 - x - 20
100	4a2b8	125 X
	4a2b8-14 4a2b-6 4a2	125 X2
L (0 31)-3	0	2-24 4.5 210
d. $\left(-2a^3b\right)^{-3}$ $\left(\frac{1}{-2a^3b}\right)^3$	e. $\left(\frac{5a^5b^2}{20a^{-2}b^2}\right)^{-3}$	f. $-5a^{-3}b^2(-12a^{-4}b^5c^{-2})^0$
$\frac{1^{3}}{(-2)^{3}a^{3\cdot3}b^{1\cdot3}}$	$\left(\frac{20a^{-2}b^2}{5a^5b^2}\right)^3$	$-5a^{-3}b^{2}$.
	$(4a^{-2-5}b^{2-2})^3$	$\begin{bmatrix} -5b^2 \\ a^3 \end{bmatrix}$
-8a°b3	(4a ⁻⁷ b°) ³	
	43 a-7.3 bo-3 64 a-4 bo a4	

Scientific notation is a method of writing numbers by powers of 10. In scientific notation, a numbers takes the form $m \times 10^n$, where $1 \le m < 10$ and n is an integer.

Scientific Notation	Move the Decimal	Standard Notation
1.275×10 ⁷	12750000	12,750,000
3.5×10 ⁻¹	0.3,5	0.35

Example 3: Simplify each expression. Write the answer in scientific notation.

a.
$$\frac{9.1 \times 10^{-3}}{1.3 \times 10^{8}}$$
 $\frac{9.1}{1.3} \times 10^{-3-8}$ b. $(3.5 \times 10^{8})(5.2 \times 10^{5})$ $(3.5)(5.2) \times 10^{8+5}$ 1.8×10^{-11}