Algebra 2 Notes Name: Length Section 9.5 - Functions and Their Inverses

DAY ONE:

In Section 7.2, you learned that the inverse of a function f(x) "undoes" f(x). Its graph is a reflection across the line y = x. The inverse may or may not be a function.

Recall that the <u>Vertical</u>—line test can help you determine whether a relation is a function. Similarly, the <u>horitontal</u>—line test can help you determine whether the inverse of a function is a function.

The Horizontal Line Test		
Words	Examples	
If any horizontal line passes through more than one point on the graph of a relation, the inverse relation is not a function.	#	
	The inverse \\S a function.	The inverse 15 NOT a function.

Recall from Section 7.2 that to write the rule for the inverse of a function, you can exchange x and y. Because the values of x and y are switched, the domain of the function will be the range of its inverse and vice versa.

Example 2: Find the inverse of each function. Determine whether it is a function, and state its domain and its range.

DAY TWO:

You can use composition of functions to verify that two functions are inverses. Because inverse functions "undo" each other, when you compare two inverses the result is the input ______.

Identifying Inverse Functions			
Words	Algebra	Example	
If the compositions of two functions equal the input value, the functions are inverses.	If $f(g(x)) = g(f(x) = x)$, then $f(x)$ and $g(x)$ are inverse functions.	$f(x) = 3x \text{ and } g(x) = \frac{1}{3}x$ $f(g(x)) = 3\left(\frac{1}{3}x\right) = x$	
		$g(f(x)) = \frac{1}{3}(3x) = x$	

Example 3: Determine by composition whether each pair of functions are inverses or not.

a.
$$f(x) = 2x + 4$$
 and $g(x) = \frac{1}{2}x - 4$
 $f(g(x)) = f(\frac{1}{2}x - 4) = 2(\frac{1}{2}x - 4) + 4$
 $f(g(x)) = f(2\sqrt{x}) = \frac{1}{4}(2\sqrt{x})^2$
 $f(g(x)) = f(2\sqrt{x}) = \frac{1}{4}(2\sqrt{x})^2$
 $f(g(x)) = g(f(x)) = g(f(x)) = 2\sqrt{x}$.