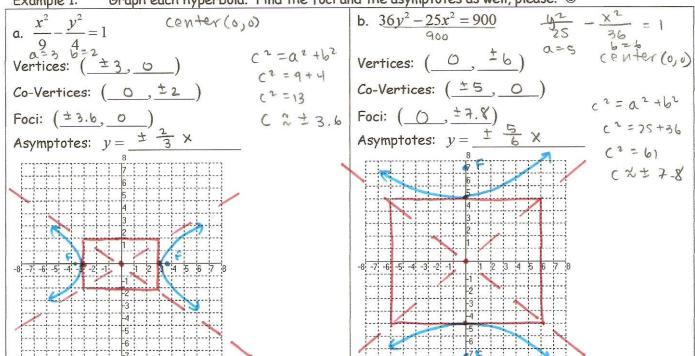
Algebra 2 Notes Section 10.4 - Hyperbolas

Name: Jey

DAY ONE:

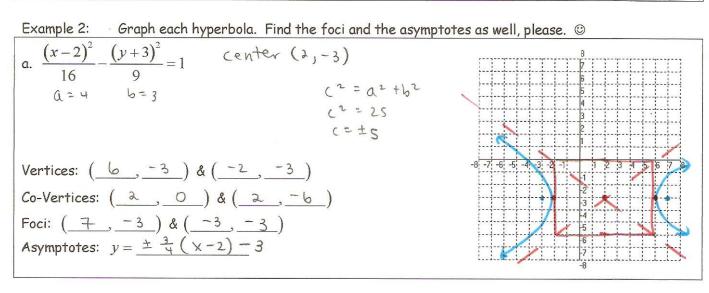
What would happen if you pulled the two foci of an ellipse so far apart that they moved outside the ellipse? The result would be a hyperbola, another conic section. A hyperbola is the set of fixed points P(x,y) in a plane such that the <u>difference</u> of the distances from P to two fixed points F_1 and F_2 , the foci, is <u>Constant</u>. For a hyperbola, d = |PF| - |PF|, where d is the constant distance.

As the graphs in the following table show, a hyperbola contains two symmetrical parts, called <u>branches</u>.


A hyperbola also has two axes of symmetry. The <u>transverse</u> axis of symmetry contains the vertices and, if it were extended, the <u>foci</u> of the hyperbola. The <u>Vertices</u> of the hyperbola are the <u>endpoints</u> of the transverse axis.

The <u>Conjugate</u> axis of symmetry separates the two branches of the hyperbola. The <u>Conjugate</u> of a hyperbola are the endpoints of the <u>Conjugate</u> axis. The transverse axis is <u>Not</u> always longer than the conjugate axis.

Major Axis	Horizontal	Vertical
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$
Vertices	(a,0) and $(-a,0)$	(0,a) and $(0,-a)$
Foci	(c,0) and $(-c,0)$	(0,c) and $(0,-c)$
Co-vertices	(0,b) and $(0,-b)$	(b,0) and $(-b,0)$
Asymptotes	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$
Graph	W.F	

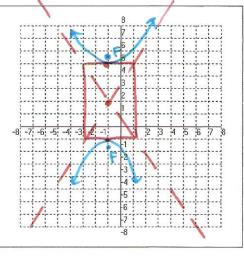

The standard form of the equation of a hyperbola depends on whether then hyperbola's transverse axis is $\frac{horizontal}{c}$ or $\frac{vertical}{c}$. The values of a, b, and c are related by the equation $\frac{c^2 = a^2 + b^2}{c}$. Also note that the length of the transverse axis is $\frac{2a}{c}$ and the length of the conjugate axis is $\frac{2b}{c}$.

Example 1: Graph each hyperbola. Find the foci and the asymptotes as well, please. ©

As with circles and ellipses, hyperbolas do not have to be centered at the origin.

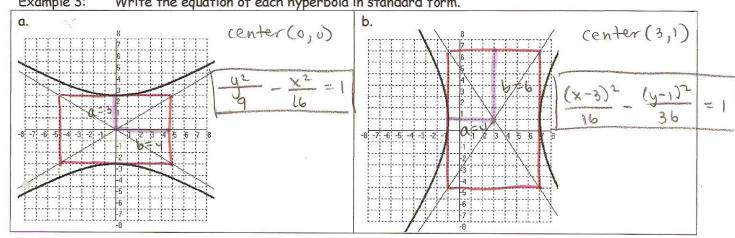
Major Axis	Horizontal	Vertical
Equation	$\frac{\left(x-h\right)^2}{a^2} - \frac{\left(y-k\right)^2}{b^2} = 1$	$\frac{\left(y-k\right)^2}{a^2} - \frac{\left(x-h\right)^2}{b^2} = 1$
Vertices	(h+a,k) and $(h-a,k)$	(h,k+a) and $(h,k-a)$
Foci	(h+c,k) and $(h-c,k)$	(h,k+c) and $(h,k-c)$
Co-vertices	ig(h,k+big) and $ig(h,k-big)$	ig(h+b,kig) and $ig(h-b,kig)$
Asymptotes	$y = \pm \frac{b}{a}(x-h) + k$	$y = \pm \frac{a}{b}(x-h) + k$

b.
$$\frac{(y-2)^2}{9} - \frac{(x+1)^2}{4} = 1$$
 center (-1,2)

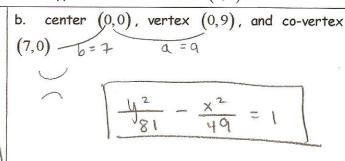

$$C^2 = a^2 + b^2$$

C2 = 13 C X ± 3.6

Vertices:
$$(-1, 5) & (-1, -1)$$


Co-Vertices: (1 , 2) & (-3 , 2)

Foci: (-1, 5.6) & (-1, -1.6)Asymptotes: $y = \frac{\pm \frac{3}{2}(x+1) + 2}$


DAY TWO:

Example 3: Write the equation of each hyperbola in standard form.

Example 4: Write an equation in standard form for each hyperbola with center at (0,0).

a. center (0,0), vertex (0,12), and focus (0,20)in c2 = a2 + b2 (= 20 $400 = .144 + b^{2}$ $b^{2} = 25b$ $y^{2} - x^{2}$ $144 - x^{2}$ $144 - x^{2}$

c. center (0,0), vertex (8,0), and focus (10,0)

d. center (0,0), vertex (4,0), and co-vertex (0,10) d=10