Find the inverse of each function. Determine whether the inverse (one-to-one) is a function and state its domain and range.

15.
$$f(x) = \frac{5x+9}{6}$$

16.
$$f(x) = (x-4)^2$$

17.
$$f(x) = 5 + \sqrt{x+8}$$

$$f^{-1}(x) = \underline{\hspace{1cm}}$$

$$f^{-1}(x) = \underline{\hspace{1cm}}$$

$$f^{-1}(x) = \underline{\qquad}$$

$$D: \qquad R:$$

Determine by COMPOSITION whether each pair of functions are inverses.

18.
$$f(x) = \frac{5-2x}{9}$$
 and $g(x) = -\frac{9}{2}x + \frac{5}{2}$

19.
$$f(x) = \frac{5}{x+1}$$
 and $g(x) = \frac{x-1}{5}$ for $x \neq -1$

20.
$$f(x) = 3\sqrt{x}$$
 and $g(x) = \frac{1}{3}x^2$ for $x \ge 0$

21.
$$f(x) = \log \frac{x}{2}$$
 and $g(x) = 2(10^x)$ for $x \ge 0$

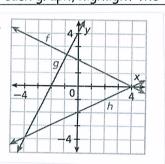
22. The number of times that a cricket chirps per minute can be found by using the function N(F) = 4F - 160, where F is the temperature in degrees Fahrenheit.

- A) Find and Interpret the inverse of N(F).
- B) What is the temperature when the cricket is chirping 60 times a minute?
- C) How many times will the cricket chirp in 1 minute at a temperature of 80°F?

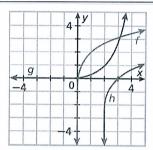
Write the rule for the inverse of each function. Then state the state its domain and range.

26.
$$f(x) = 5(x+6)^2$$

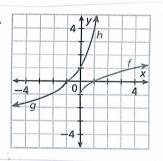
27.
$$f(x) = \sqrt[3]{x-12}$$


$$28. \ f(x) = \frac{x^3 - 5}{12}$$

$$f^{-1}(x) =$$

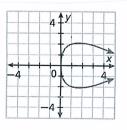

$$f^{-1}(x) =$$

For each graph, highlight the two functions that are inverses.

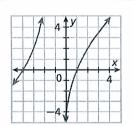

33

34.

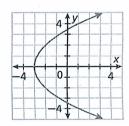
35.


39. A brown bear with a radio collar walks along a river, the distance from the bear to an observation post after t seconds is given by the function $d(t) = \sqrt{1600 + 9t^2}$.

A) Find and Interpret the inverse of d(t).


B) If the tracking equipment has a range of 5500 feet, how long will a person in the observation post be able to track the bear before having to move?

Use the horizontal line test to determine whether the inverse of each relation is a function.


9.

10.

11.

