
Use the horizontal line test to determine whether the inverse of each relation is a function.

Find the inverse of each function. Determine whether the inverse (one-to-one) is a function and state its domain and range.

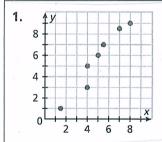
4.
$$f(x) = -3x + 21$$

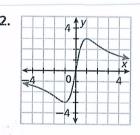
5.
$$g(x) = x^2 - 9$$

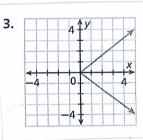
6.
$$f(x) = -3x + 21$$

$$f^{-1}(x) =$$

$$f^{-1}(x) =$$


$$f^{-1}(x) =$$


$$f^{-1}(x) =$$
 $f^{-1}(x) =$ f^{-


Algebra II Class Work #3 Inverse Functions

Name___

Use the horizontal line test to determine whether the inverse of each relation is a function.

Find the inverse of each function. Determine whether the inverse (one-to-one) is a function and state its domain and range.

4.
$$f(x) = -3x + 21$$

5.
$$g(x) = x^2 - 9$$

6.
$$f(x) = -3x + 21$$

$$f^{-1}(x) =$$

$$D:$$
 $R:$

$$f^{-1}(x) = \underline{\qquad}$$

 $D: \underline{\qquad} R: \underline{\qquad}$

Determine by COMPOSITION whether each pair of functions are inverses.

7.
$$f(x) = 4x - 12$$
 and $g(x) = -4x + 8$

8.
$$f(x) = \sqrt{3x}$$
 and $g(x) = \frac{x^2}{3}$ for $x \ge 0$

Find the inverse of each function. Determine whether the inverse (one-to-one) is a function and state its domain

12.
$$f(x) = \frac{3}{5}x$$

13.
$$f(x) = 8x^3$$

14.
$$f(x) = \frac{x}{x+1}$$

$$f^{-1}(x) = \underline{\qquad}$$

Determine by COMPOSITION whether each pair of functions are inverses.

7.
$$f(x) = 4x - 12$$
 and $g(x) = -4x + 8$

8.
$$f(x) = \sqrt{3x}$$
 and $g(x) = \frac{x^2}{3}$ for $x \ge 0$

Find the inverse of each function. Determine whether the inverse (one-to-one) is a function and state its domain and range.

12.
$$f(x) = \frac{3}{5}x$$

13.
$$f(x) = 8x^3$$

14.
$$f(x) = \frac{x}{x+1}$$

$$f^{-1}(x) = \underline{\hspace{1cm}}$$

$$f^{-1}(x) = \underline{\hspace{1cm}}$$