Write an algebraic expression to represent each situation.

9. the measure of the supplement of an angle whose measure is x°

180-x

10. the number of \$0.60 bagels that can be purchased with d dollars

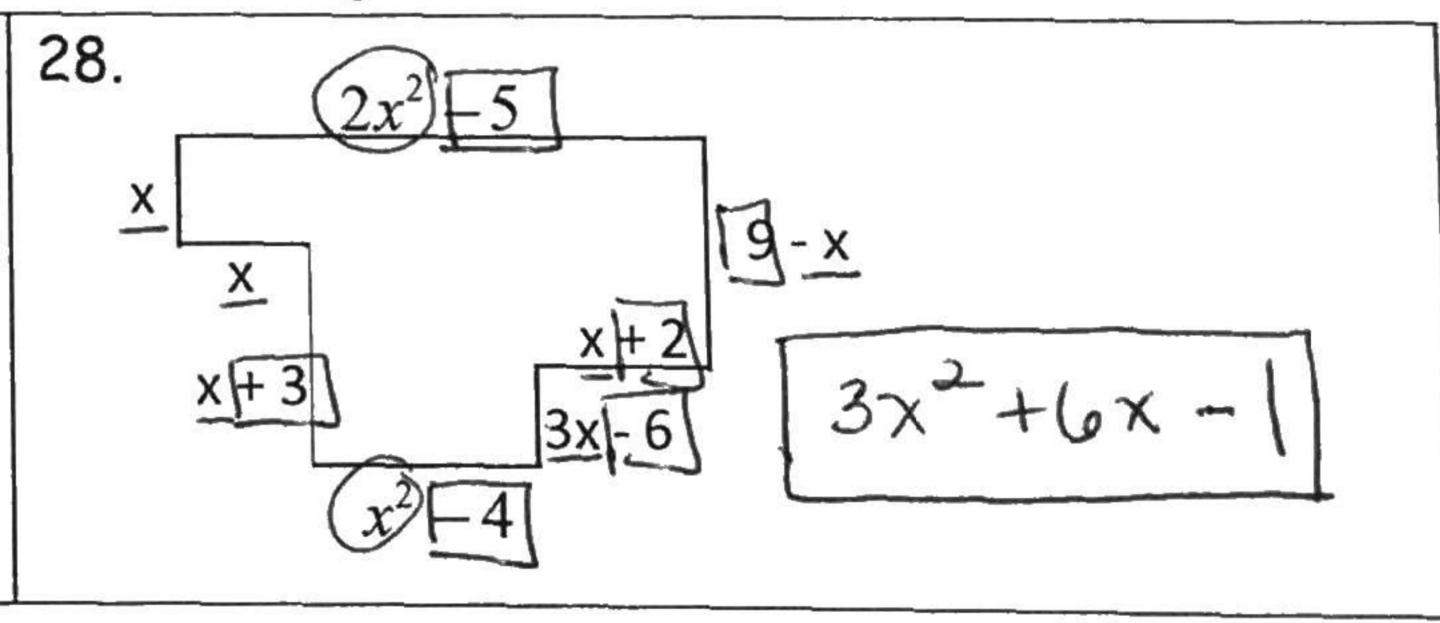
Evaluate each for the given values of the variables.

- 11. $6c-3c^2+d^3$ for c=5 and d=3 $6(5)-3(5)^2+(3)^3$
- 14. $\frac{2s-t^2}{st^2}$ for s=5 and t=3 $\frac{2(5)-(3)^2}{(5)(3)^2}=\boxed{\frac{1}{45}}$

Simplify each expression.

15. -x-3y+4x-9y+2 $\sqrt{3} \times -12y+2$

18. x(4+y)-2x(y+7) 4x + xy - 2xy - 14x $\sqrt{-10x - xy}$


Simplify each express. Then evaluate the expression for the given values of the variables.

20. $-a(a^2 + 2a - 1)$ for a = 2 $-a^3 - 2a^2 + a$ $-(2)^3 - 2(2)^2 + 2$ -14

21. $(2g-1)^2 - 2g + g^2$ for g = 3 $4g^2 - 4g + 1 - 2g + g^2$ $5g^2 - 6g + 1$ $5(3)^2 - 6(3) + 1$ 28

Write and simplify an expression for the perimeter of each figure.

Solve each problem. Show ALL WORK!!

- 29. The Dane family is going on a 15-day vacation to travel with relatives. They budget \$100 per day when visiting relatives and \$275 per day when traveling.
- A) Write an expression for the total budgeted cost of the vacation if they visit relatives for d days. 275(15-d) + 100d
- C) How does this cost change for each additional day they stay with relatives? They would save \$175

- 30. While Neil Armstrong and Buzz Aldrin walked on the Moon, the *Apollo 11* command module completed 1 orbit every 119 minutes.
- B) The Apollo 11 module made 30 orbits. For how many hours did it orbit the moon? 59.5 hours
- C) Estimate the number of orbits the Apollo 11 module would make in 1 week if it continued at the same rate? $\frac{\Delta pprox}{2}$ 84.7