| #20 | Algebra | 2 | Combo | Worksheet |
|-----|---------|---|-------|-----------|

| Name: |  |
|-------|--|
|       |  |

Determine whether the function shows growth or decay, find the percent of increase or decrease and give the domain and range.

|    |            | (0)                        |   |   |   |   | - |
|----|------------|----------------------------|---|---|---|---|---|
| 1. | <i>y</i> = | $\left(\frac{8}{3}\right)$ | } | = | 2 | 6 | 6 |

Growth Growth or Decay?

Percent Increase/Decrease? 166%

IK Range: Y>0

| _  |     | 1 | (1) | ľ |
|----|-----|---|-----|---|
| 2. | V = | - | -   | ı |
|    | ,   | 2 | (4) | 1 |

Growth or Decay? Dccay

Percent Increase/Decrease? 75%

Domain: Range: 4>0

Write an exponential function  $y = ab^x$  to model the information. Then use your model to make the II. requested prediction or estimate the time.

3. Suppose you buy a computer that costs \$1150 and expect for its value to depreciate by 42% each year. What will be the computer's resale value in 3 years?

\$ 224.38

4. If a stock priced at \$27 increases at a rate of 6.04% each year, when will it be worth approximately \$100? Round to the nearest tenth of a year.

23 years

Given f(x), find the equation of its inverse,  $f^{-1}(x)$ .

$$5. \quad f\left(x\right) = \frac{x}{7} + 5$$

6.  $f(x) = (x-3)^2 + 5$ 

$$x = (y-3)^{L} + S$$

Rewrite each equation in logarithmic form. Rewrite each equation in exponential form.

7.  $\left(\frac{1}{2}\right)^{-4} = 16$ 

8.  $10^{-4} = 0.0001$ 

9. 
$$\log_2 32 = 5$$

10. 
$$\log 1000 = 3$$

Evaluate each logarithm WITHOUT the calculator.

- 11.  $\log_4 16 = x$
- 12. log 1 = x
- 13.  $\log_1 27 = x$
- 14.  $\log_{r} 32 = 5$

- 15.  $\log_{x} 64 = 2$
- 16.  $\log_{x} 5 = 1$
- 17.  $\log_{\frac{1}{2}} x = -4$
- 18.  $\log_4 x = 1$

Write as a single log. Simplify if possible.

$$2. \log_3 3 + \log_3 27$$

3. 
$$\log 100 + \log 1000$$

$$\log_5 3125 = 5 \log_3 81 = 4$$

6. 
$$\log_6 496.8 - \log_6 2.3$$
 $\log_6 216 = 3$ 

Simplify if possible. Show all work

7.  $\log_8 8^2 = x$ 

8. 
$$\log_3 3^5 = x$$

9. 
$$\log_7 49^3 = x$$

$$10. \log_1(.25)^4 = x$$

$$7^{x} = 49^{3}$$

$$\frac{1}{3}x = .25$$

$$\gamma^{\times} = \gamma^{2\cdot 3}$$

X = 6

$$7^{\times} = 49^{3}$$
 $7^{\times} = 7^{2 \cdot 3}$ 
 $2^{-1 \cdot \times} = 4^{-1 \cdot 4}$ 
 $2^{-1 \cdot \times} = 4^{-1 \cdot 4}$ 
 $2^{-1 \cdot \times} = 4^{-1 \cdot 4}$ 
 $2^{-1 \cdot \times} = 2^{-1 \cdot 4}$ 

12. 
$$\log 0.1 + \log 1 + \log 10$$

$$13. 7^{\log_7 7} - \log_7 7^7$$

Write as a single log. Simplify if possible.

14. 
$$\log_8 4 + \log_8 16$$

$$15. \log 2 + \log 5$$

16. 
$$\log_{2.5} 3.125 - \log_{2.5} 5$$

18. 
$$\log_2 16 - \log_2 2$$

19. 
$$\log_{1.5} 6.75 - \log_{1.5} 2$$

Simplify if possible. Show all work

20. 
$$\log_2 16^3 = x$$

$$2^{\times} = 16^{3}$$
  
 $2^{\times} = 2^{4.3}$ 

$$21. \log(100)^{0.1} = x$$

$$10^{\times} = 100^{\circ 1}$$
 $10^{\times} = 10^{2 \cdot .1}$ 

22. 
$$\log_5 125^{\frac{1}{3}} = x$$

$$5^{x} = 125^{1/3}$$
  
 $5^{x} = 5^{3(1/3)}$ 

23. 
$$\log_3 3^{7+x} = X$$
 7+x -1

$$3^{x} = 37 + x^{-1}x = 6$$